查看原文
其他

亚马逊:自动选择AI模型,进化论方法效率更高!

新智元 极市平台 2021-09-20

加入极市专业CV交流群,与6000+来自腾讯,华为,百度,北大,清华,中科院等名企名校视觉开发者互动交流!更有机会与李开复老师等大牛群内互动!

同时提供每月大咖直播分享、真实项目需求对接、干货资讯汇总,行业技术交流。关注 极市平台 公众号 ,回复 加群,立刻申请入群~

本文转自新智元

来源:CNBC等

编辑:大明

【新智元导读】亚马逊称,进化论可以帮助AI模型的选择。选择架构是构建AI模型的关键步骤。研究人员表示,鉴定遗传算法和协同进化算法的性能指标取决于彼此之间的相互作用,是寻找最佳(或接近最佳)AI模型架构的最实用方法,可以适用于任何计算模型。


选择架构是构建任何AI模型的关键步骤,但是说起来容易做起来难。除了由“ AutoML”系统生成的可根据基本任务概述工作的内容之外,关于模型架构的设计还要结合历史先例、领域内的知识以及反复试验的获得的知识。
 
在于慕尼黑举行的国际人工神经网络国际会议上发表的一篇论文(“关于函数逼近的界限”)中,来自亚马逊的研究人员探索出了一种可适用于任何计算模型的技术,条件是该模型可以计算出与图灵机相同的功能。(这里的“图灵机”是指定义抽象机的模型,可以根据规则来操纵符号。
 

“无论使用哪种学习算法,选择哪种体系结构或调整训练参数(例如批规模或学习率),选择神经体系结构都不可能为给定的机器学习问题提供最佳解决方案,”Alexa AI机器学习平台服务组织的研究工程师,论文的主要作者温特表示。“只有考虑到尽可能多的可能性,才能确定一种在理论上保证计算准确性的体系结构。
 
为此,研究团队评估了函数逼近问题的解决方案,这是AI算法搜索参数以逼近目标函数输出的方式的数学抽象方法。研究人员将其重新制定为发现一个估计目标函数输出的已知函数序列的问题,以获取更大的系统建模优势。
 

研究人员的研究表明,应该选择AI模型的组成部分,以确保它们具有“图灵等效性”。研究人员认为,最好通过自动搜索来识别模型,使用程序来设计特定任务的AI模型架构。这种搜索中的算法会首先生成用于解决问题的其他候选算法,然后将性能最佳的候选者彼此组合并再次进行测试。
 
“本文中……可立即应用的结果是鉴定遗传算法,更具体地说,是协同进化算法,其性能指标取决于彼此之间的相互作用,这是寻找最佳(或接近最佳)架构的最实用方法,”论文作者写道。“基于经验,许多研究人员得出的结论是,协同进化算法提供了构建机器学习系统的最佳方法。但是本文中的函数逼近框架有助于为他们的直觉提供更安全的理论基础。
 
亚马逊并不是唯一一个倡导采用进化方法进行AI架构搜索的机构。今年7月,Uber为名为EvoGrad的进化算法开源了开发资源库。去年10月,Google推出了AdaNet,这是一种用于组合机器学习算法以获得更好的预测观点的工具。

参考链接:
https://venturebeat.com/2019/09/23/amazon-researchers-say-evolutionary-approach-improves-the-selection-of-ai-models/




-End-


*延伸阅读


添加极市小助手微信(ID : cv-mart),备注:研究方向-姓名-学校/公司-城市(如:目标检测-小极-北大-深圳),即可申请加入目标检测、目标跟踪、人脸、工业检测、医学影像、三维&SLAM、图像分割等极市技术交流群,更有每月大咖直播分享、真实项目需求对接、干货资讯汇总,行业技术交流,一起来让思想之光照的更远吧~



△长按添加极市小助手


△长按关注极市平台


觉得有用麻烦给个在看啦~  


: . Video Mini Program Like ,轻点两下取消赞 Wow ,轻点两下取消在看

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存